MATH 1A - MIDTERM 3 - SOLUTIONS

PEYAM RYAN TABRIZIAN

1. (25 points) Sketch a graph of the function $f(x)=x \ln (x)-x$. Your work should include:

- Domain
- Intercepts
- Symmetry
- Asymptotes (no Slant asymptotes, though)
- Intervals of increase/decrease/local max/min
- Concavity and inflection points
(1) Domain: $x>0$
(2) No y-intercepts, x-intercept $x=e(f(x)=0 \Leftrightarrow x \ln (x)-$ $x=0 \Leftrightarrow x \ln (x)=x \Leftrightarrow \ln (x)=1 \Leftrightarrow x=e)$
(3) No symmetry
(4) NO H.A. or V.A., because:
$\lim _{x \rightarrow \infty} x \ln (x)-x=\lim _{x \rightarrow \infty} x(\ln (x)-1)=\infty \times \infty=\infty$ and:
$\lim _{x \rightarrow 0^{+}} x \ln (x)-x=\lim _{x \rightarrow 0^{+}} x(\ln (x)-1)=\lim _{x \rightarrow 0^{+}} \frac{\ln (x)-1}{\frac{1}{x}} \stackrel{H}{=} \lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{-\frac{1}{x^{2}}}=\lim _{x \rightarrow 0^{+}}-x=0$
(H means l'Hopital's rule)
(5) $f^{\prime}(x)=\ln (x)+1-1=\ln (x), f$ is decreasing on $(0,1)$ and increasing on $(1, \infty),(1,-1)$ is a local minimum by the first derivative test.
(6) $f^{\prime \prime}(x)=\frac{1}{x}>0$ (if $x>0$), f is concave up on $(0, \infty)$, no inflection points

(7) Graph:

1A/Practice Exams/Mockgraph.png

2. (10 points) Use a linear approximation (or differentials) to find an approximate value of $\sqrt{99}$

Linear approximation:
Let $f(x)=\sqrt{x}, a=100$. Then $f(100)=10$ and $f^{\prime}(100)=$ $\frac{1}{2(10)}=\frac{1}{20}$, so

$$
L(x)=f(a)+f^{\prime}(a)(x-a)=10+\frac{1}{20}(x-100)
$$

Now:
$\sqrt{99}=f(99) \approx L(99)=10+\frac{1}{20}(99-100)=10-0.05=9.95$

Differentials:

Let $f(x)=\sqrt{x}, x=100, d x=99-100=-1$. Then:

$$
d y=f^{\prime}(x) d x=\frac{1}{20}(-1)=-0.05
$$

And

$$
\sqrt{99} \approx f(100)+d y=10-0.05=9.95
$$

3. (15 points) Assume the radius of a cone is increasing at a rate of 3 cm / s while its height is decreasing at a rate of $1 \mathrm{~cm} / \mathrm{s}$. At what rate is its volume increasing/decreasing when its radius is 2 cm and its volume is $\frac{4 \pi}{3} \mathrm{~cm}^{3}$?
(1) Picture: Just draw a picture of a cone with base radius r and height h.
(2) WTF $\frac{d V}{d t}$ when $r=2$ and $V=\frac{4 \pi}{3} \mathrm{~cm}^{3}$

$$
\begin{gather*}
V=\frac{\pi}{3} r^{2} h \tag{3}\\
\frac{d V}{d t}=\frac{\pi}{3} 2 r \frac{d r}{d t} h+\frac{\pi}{3} r^{2} \frac{d h}{d t}
\end{gather*}
$$

(5) But $r=2, \frac{d r}{d t}=3$ and $\frac{d h}{d t}=-1$ (since h is decreasing). Finally, to figure out h, use the fact that $V=\frac{\pi}{3} r^{2} h$, so we get:

$$
\frac{4 \pi}{3}=\frac{\pi}{3} 2^{2} h
$$

So $h=1$, and finally, we get:
(6)

$$
\frac{d V}{d t}=\frac{\pi}{3} 2(2)(3)(1)+\frac{\pi}{3}(2)^{2}(-1)=4 \pi-\frac{4}{3} \pi=\frac{8 \pi}{3}
$$

Whence, $\frac{d V}{d t}=\frac{8 \pi}{3} \mathrm{~cm}^{3} / \mathrm{s}$
4. (10 points) Find the following limits:
(a)

$$
\lim _{x \rightarrow 0} x^{2} \ln (x)=\lim _{x \rightarrow 0} \frac{\ln (x)}{\frac{1}{x^{2}}} \stackrel{H}{=} \lim _{x \rightarrow 0} \frac{\frac{1}{x}}{\frac{-2}{x^{3}}}=\lim _{x \rightarrow 0}-\frac{x^{2}}{2}=0
$$

(b) $\lim _{x \rightarrow \infty} x^{\frac{1}{x}}$

1) Let $y=x^{\frac{1}{x}}$
2) $\ln (y)=\frac{1}{x} \ln (x)=\frac{\ln (x)}{x}$
3)

$$
\lim _{x \rightarrow \infty} \frac{\ln (x)}{x} \stackrel{H}{=} \lim _{x \rightarrow \infty} \frac{\frac{1}{x}}{1}=0
$$

4) Hence $\lim _{x \rightarrow \infty} x^{\frac{1}{x}}=e^{0}=1$
5. (10 points) Find the absolute maximum and minimum of f on $[0,2]$, where:

$$
f(x)=x^{4}-4 x+1
$$

1) Endpoints: $f(0)=1, f(2)=16-8+1=9$
2) Critical numbers:

$$
\begin{gathered}
f^{\prime}(x)=4 x^{3}-4=4\left(x^{3}-1\right) \\
\text { So } f^{\prime}(x)=0 \text { if } x^{3}-1=0 \text {, so } x=1 \text {, and } f(1)=1-4+1=-2
\end{gathered}
$$

3) Compare:

The absolute minimum of f is $f(1)=-2$ and the absolute maximum of f is $f(2)=9$.
6. (10 points) Show that if $f^{\prime}(x)>0$ for all x, then f is increasing.

Hint: Assume $b>a$ and show that $f(b)>f(a)$

This is actually much easier than you think!
Assume $b>a$
By the MVT on $[a, b]$, we get:

$$
\frac{f(b)-f(a)}{b-a}=f^{\prime}(c)>0
$$

So:

$$
\frac{f(b)-f(a)}{b-a}>0
$$

Hence, multiplying by $b-a>0$, we get:

$$
f(b)-f(a)>0
$$

So

$$
f(b)>f(a)
$$

And we're done!
7. (20 points) Find the dimensions of the rectangle of largest area that can be inscribed in (put inside of) a circle of radius 1.

1) First draw a good picture! (here $r=1$)

1A/Practice Exams/Mockrectangle.png

2) Based on your picture, the length of the rectangle is $2 x$ and the width is $2 y$, and the area is $A=(2 x)(2 y)=4 x y$. But since (x, y) is on the circle, $x^{2}+y^{2}=1$, so $y=\sqrt{1-x^{2}}$, so $A(x)=$ $4 x \sqrt{1-x^{2}}$. But instead of maxizing A, let's maximize:

$$
f(x)=A^{2}=16 x^{2}\left(1-x^{2}\right)=16 x^{2}-16 x^{4}
$$

3) The constraint is $0 \leq x \leq 1$
4) $f^{\prime}(x)=32 x-64 x^{3}=32 x\left(1-2 x^{2}\right)=0 \Leftrightarrow x=0 \operatorname{or} x^{2}=$ $\frac{1}{2} \Leftrightarrow x=\frac{1}{\sqrt{2}}$ (we're ignoring $x=0$ and $x=-\frac{1}{\sqrt{2}}$ here.
Also, $f(0)=f(r)=0$, and $f\left(\frac{1}{\sqrt{2}}\right)>0$ (we don't really care what it is, as long as it's positive), so by the closed interval method, $x=\frac{1}{\sqrt{2}}$ is an absolute maximizer.

So our answer is:

$$
\text { Length }=2 x=\sqrt{2}, \text { Width }=2 y=2 \sqrt{1-\frac{1}{2}}=2 \frac{1}{\sqrt{2}}=\sqrt{2}=x
$$

So the optimal rectangle is a square!!!
8. (ONLY do this one if you got completely stuck on problem 7.)

If $12 \mathrm{~cm}^{2}$ of material is available to make a box with a square base and an open top, find the largest volume of the box.

1) Draw a picture of a box without the top, label the sides of the base r and the height h.
2) The volume is $V=r^{2} h$. However, the surface area of the box without the top is $S=r^{2}+4 r h=12$, so $h=\frac{12-r^{2}}{4 r}=\frac{3}{r}-\frac{r}{4}$, whence:

$$
V(r)=r^{2} h=r^{2}\left(\frac{3}{r}-\frac{r}{4}\right)=3 r-\frac{r^{3}}{4}
$$

3) Constraint: $r>0$
4)

$$
V^{\prime}(r)=3-\frac{3}{4} r^{2}=0 \Leftrightarrow \frac{3}{4} r^{2}=3 \Leftrightarrow r^{2}=4 \Leftrightarrow r=2
$$

By FDTAEV, $r=2$ maximizes the volume of the box.
And if $r=2, h=\frac{3}{r}-\frac{r}{4}=\frac{3}{2}-\frac{1}{2}=1$, and so the largest volume is $V=r^{2} h=4$

Bonus 1 (5 points) Show that $f(x)=\ln (x)-x$ does not have a slant asymptote at ∞.

Hint: Assume $f(x)$ has a slant asymptote $y=m x+b$ at ∞. Calculate m, then calculate b, and find a contradiction!

Following the hint, let's calculate m :
$m=\lim _{x \rightarrow \infty} \frac{f(x)}{x}=\lim _{x \rightarrow \infty} \frac{\ln (x)-x}{x} \lim _{x \rightarrow \infty} \frac{\ln (x)}{x}-1=-1$
And
$b=\lim _{x \rightarrow \infty} f(x)-(m x)=\lim _{x \rightarrow \infty} \ln (x)-x+x=\lim _{x \rightarrow \infty} \ln (x)=\infty$
This is a contradiction (b has to be finite), hence f does not have a S.A. at ∞

Bonus 2 (5 points)

Assume $-1<f(x)<1$ and $f^{\prime}(x) \neq 1$ for all x. Show that f has exactly one fixed point.

At least one fixed point: Let $g(x)=f(x)-x$. Then $g(-1)=$ $f(-1)+1>0$ (since $f(x)>-1$) and $g(1)=f(1)-1<0$ (since $f(x)<1)$, so by the IVT, g has at least one zero, so f has at least one fixed point.

At most one fixed point: Assume f has 2 fixed points a and b, then $f(a)=a$ and $f(b)=b$. Then, by the MVT on $[a, b]$:

$$
\frac{f(b)-f(a)}{b-a}=f^{\prime}(c)
$$

But $f(b)=b$ and $f(a)=a$, so:

$$
\frac{b-a}{b-a}=f^{\prime}(c)
$$

So:

$$
1=f^{\prime}(c) \neq 1
$$

Which is a contradiction, and hence we're done!

